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Abstract

This paper explores the use of JOreskogis (i970) congeneric
modeling approach to reliability using censored quantitative
variables. Two Monte Carlo studies were conducted. The first
study explored the robustness of Normal theory Generalized Least-
squares estimates for a single factor congeneric model across a
variety of sample sizes (N=25, 50, 100, 400), model loading sizes

(large N = .9 and moderate A = .6), and different levels of
censoring (0%, 25%, 50% 75%). A second study compared alternate
estimation procedures for different levels of variable censoring
(0%, 25%, 50%, 75%) based on a single factor large loading
congeneric model with a sample size of N=100. Both normal theory
generalized least-squares (NTGLS) (Joreskog & Goldberger, 1972;
Browne, 1974), asymptotically distribution free (ADF) (Browne,

1982), and latent TOBIT estimators (Muthen, 1985; 1987a; in
press) were compared as to their efficiency in estimating model

parameters.
Results from study one confirmed previous findings that

convergence rate is inversely related to sample size, and to some
degree size of the model loadings. Censoring of variables
produced the expected negative bias in estimates using NTGLS
methods with the magnitude of the bias somewhat robust against
sample size variation. Results from study two indicated that the
TOBIT estimates were robust with respect to model rejection and
amount of parameter b5as across various levels of variable
censoring. Both NTGLS and ADF methods proved to be unsatisfactory
both in model rejections and percent of bias.
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Introduction

Several procedures have been proposed for the estimation of

interrater reliability, many of which have been based on an

analysis of variance approach (Winer, 1962). Though these

procedures are used frequently they require acceptance of a

number of assumptions (Saal, Downey & Lahey, 1980). One major

assumption is that all the measures must have the same unit of

measurement, sometimes referred to as "tau equivalency" (Lord &

Novick, 1968). In response to this assumption, a covariance

modeling procedure, based on J6reskog's (1970) general model for

the analysis of covariance structures has been proposed (alerts,

Linn & JOreskog, 1974; Van Der Kamp & Mellenbergh, 1976).

While the covariance modeling procedure provides details

about the assumptions surrounding the use of analysis of variance

based reliability measures, it is not without some limitation.

One major limitation is that the observed variables must be

multivariate normally distributed for the appropriate estimation

of parameters, if one is using the typical estimation procedures

(e.g., maximum likelihood, or normal theory generalized least

squares). This procedure would come under question if one

attempted to analyze censored variables (variables that have a

high concentration of cases at either end of the diatribution).

This paper explores the use of Jareskog's (1970) congeneric

modeling approach to reliability using censored quantitative

4
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variables. Two Monte Carlo studies were conducted. The first

study explored the robustness of Normal theory Generalized Least-

squares (NTGLS) estimates for a single factor congeneric model

across various sample sizes (25, 50, 100, 400), model loadings

(large X = .9 and moderate X = .6), and levels of variable

censoring (0%, 25%, 50% 75%:. A second study compared alternate

estimation procedures for different levels of variable censoring

(0%, 25%, 50%, 75%) for the congeneric model, using NTGLS

(JOreskog & Goldberger, 1972; Browne, 1974), asymptotically

distribution free methods (ADF) (Browne, 1982), and latent TOBIT

estimators (Muth6n, 1985; 1987a; in press). These methods were

then compared as to their efficiency in estimating model

parameters.

Congeneric Modeling Approach to Reliability

The congeneric approach, based on covariance modeling

(JOreskog, 1970) considers a rater as a test instrument, with a

data matrix X(m x k), denoting rater scores for a randomly

selected subject group (m), where m = tie number of observations

(subjects) over (k) raters. Assuming the rows of X are

independently distributed, each having a multivariate normal

distribution, the ...v4,generic model for a four-indicator

reliability model may be written as:

5
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x
1 Al

9x2 X2

/1 +

[71'e

2

1
A 11 + es (1)x

3 X
3 61E31

x
4 X4

L
9,

where (X) and (8 ) are parameters to be estimated for each (k)

rater, with (1.) representing the true component and (9 ) the

error component. Assuming uncorrelated measurement errors, with

variables that have a zero mean and a factor variance of 1.00,

the variance-covariance matrix for this model may be defined as:

:2_

X2 +

x e

1A1

el

x
2

2
e
e2

X
1
X3 X2 X3 X

2

3
+

E3

(2a)

X1 X4 X2 X4 X3 X4
4 E

4

which may be rewritten as:

= A A' + ee (2D)

6



6

where 8E is an (k x k) diagonal matrix of error variances, and A'

is a vector of loadings on a single common factor. Using this

model, one is able to test the initial assumption that all

measures have the same underlying true score (It). For example, if

one considers a situation where four independent assessments of

patient symptoms are rated using a continuous symptom scale, one

would estimate the A loading matrix and the error variances Oc.

For convenience, as previously mentioned, the variance of the

true score may be standardized (011 = 1.00). This approach will

provide two overidentifying restrictions in the model (two

degrees of freedom), allowing one to test the following position:

H
o

:

A

S = E

If this null hypothesis is not rejected, individual rater

reliability may be estimated as:

A

Pi

with composite reliability being estimated as:

A

P
c

A 2

(E X ) + E AE
Ei

A

7

(3)

(4)
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Subsets of the Congeneric Model

A major assumption in the use of intraclass correlation and

generalizability theory procedures (Cronbach, Rajaratnam &

Gleser, 1963) is that all measures have the same unit of

measurement, sometimes referred to as being "tau-equivalent"

(Lord & Novick, 1968). If this assumption is not met, then the

averaging of scores would not be meaningful, and the use of ANOVA

based procedures would not be appropriate. J6reskog (1970)

provides a procedure based on a subset of the congeneric model to

test for tau-equivalence. This assumes that measures are

equivalent if the regression weights Ak are equal in A. In the

tau-equivalence model, one would test:

Ho: X1 A2 A3 X4

with (%k(k + 1)-(k + 1)) degrees of freedom. A total of (k + 1)

parameters would then be estimated. If the tau - equivalency

hypothesis is rejected, then ANOVA procedures should be rejected

for estimating reliability and/or generalizability procedures

(werts, Linn & J6reskog, 1974). If the hypothesis is not rejected

8
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the parameter estimates may be used to estimate individual

reliability:

^2
A

A
P
i

= (5)

and composite reliability:

1%2 A

A +
0s.

1

2
A

A
(k A )

Pc
=

(6)
A 2

(k A ) + E e
ei

It should also be noted that the reliabilities estimated

from equation (5) may vary contingent upon differing error

variances (e
e
). The stability of error variances is assumed in

the ANOVA procedures, but may be tested using another subset of

the congeneric model, sometimes referred to as a "parallel model"

(Gulliksen, 1968; Joreskog, 1970). This model implies equality

constraints on both the
Xi 's and the 0E 's, so one tests the

1
following:

H
01:

Al = A2 = A3 A4=

H
o2*

0
e
1

=

®E2
= e

c3
=

0E4

9
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with (11.k(k + 1) - 2) degrees of freedom. A total of two

parameters will be estimated in this specific model. If the

parallel hypothesis is rejected, Werts, et al. (1974) assert that

the use of ANOVA based procedures would have underestimated the

composite reliability. If the parallel hypothesis is not rejected

on may estimate the reliabilities as follows:

A

Pk

^2

and composite reliability:

^ 2

(k x )

(7)

Pc
(8)

^ 2 ^

(k X) +k8£

Tests of these hypotheses amount to tests of the validity of

specific assumptions about the model, which are not provided in

the ANOVA based intraclass reliability estimates (alerts, Linn &

Jareskog, 1974).

While the Joreskog (1970) procedure seems attractive for

answering questions regarding measurement unit equivalency and

stability of error variances in reliability models, the procedure

has limitations of its own.

10
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Congeneric Model Limitations

The test of the aforementioned hypotheses are somewhat

contingent upon the type of parameter estimation procedure used

in constructing the measurement model. Typically, normal theory

maximum likelihood (NTML) or generalized least-squares (NTGLS)

estimation procedures have been recommended, simply because these

procedures allow the estimation of standard errors and provide a

test statistic (likelihood ratio L
2

) for assessing the hypotheses

(J6reskog, 1970). The adequacy of using NTML or NTGLS estimation

procedures for estimating such a reliability model must of course

be based on a number of conditions. First, sample size seems to

be a crucial factor. Monte Carlo studies based on normal theory

distribution sampling have indicated that the use of NTML and

NTGLS estimation procedures on sample sizes of less than 50

result in model convergence problems, while sample sizes of N=25

result in serious improper solutions (Boomsma, 1982; 1983; 1985;

Anderson & Gerbing, 1984). Typically, minimum sample size

recommendations for unbiased estimates are usually set at N

100.

Secondly, distributions with aberrant skewness and kurtosis

values result in higher than usual model rejections (Boomsma,

1983) and poorer parameter estimates. It is with this second

limitation that this paper will concentrate.

11
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Censored Continuous Variable:s

One source of aberrant skewness and kurtosis values in sample

variables has been the result of analyzing sample truncated

normal distribution variables. Hald (1949) has called such

variables "censored" variables, sinre the population from which

the sample variable was drawn is considered normally distributed,

and the sample being considered incomplete. More formally, a

continuous censored variable may be defined as:

y
Cl

if y* s ci

Y = y* , if c
1

< y* < c
u

= c
u

. if y* 2 cu ,

where c
1

and c
u

represent known lower and upper censoring

constants, which Aay take on values -cc. to +0. Censored variables

may thus be considered variables that have limited variability

with a large proportion of cases occurring at one or both end

point of the scale. Muthen (1985; 1987a) has shown that increases

in censoring have a substantial effect on the attenuation of the

population correlation estimates (Figure 1), which has an effect

on model estimates.

Insert Figure 1 about here
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Censored variables are common place in the measurement of

extreme phenomena, such as in the case of measuring psychotic

symptomatology. A major question then becomes, how robust is the

use of normal theory estimation procedures, specifically NTGLS,

for estimating congeneric reliability models with censored

variables? While studies have shown that normal theory methods

are fairly robust with regards to mild deviations (Boomsma, 1983;

Muthen & Kaplan, 1985) questions remain regarding the robustness

of NTGLS to moderate and sever deviations.

Monte Carlo Studies

$tudy Design 1:

Table 1 gives an overview of the first study's design. In

this study only NTGLS estim4tes were used, and were obtained by

using the LISCOMP (Muthen, 1987b) computer program on an IBM-

4341 mainframe computer. A standardized population covariance

matrix (L;) was created for the four variable single factor

congeneric model using equation (2b). Two separate single factor

model population covariance matrices were created. The first

matrix (based on a highly reliable model with large loadings

(LLM)) was established using; Var(11) = 1.00 and Al = (.9, .9, .9,

.9]. The second matrix (based on a less reliable model using

moderate loadings (MLM)) was established using; Var(1L) = 1.00 and

A
2

= (.6, .6, .6, .6]. Variances of the errors in measurement

13
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(uniqueness) were defined for both models as ee = 1 - 7A2. Using

equation (3), it may be shown that rater reliability for the

congeneric model may be reduced to x
2

. Table 2 provides

population values and corresponding standard errors. Each E

matrix was then used to generate 100 sample covariance (S)

matrices for each sample size condition (N=25, 50, 100, 400).

Insert Table 1 about here

Insert Figure 2 about here

Insert Table 2 about here

Study Design 2:

Table 3 provides details about the design of the second

Monte Carlo study. In this study three different estimation

procedures were considered. First, as previously discussed, NTGLS

was estimated over the conditions. Second, in an attempt to

reduce the possible inflation in L 2 due to non-normality,

Browne's (1962) asymptotically distribution free (ADF)

14
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generalized least-squares estimator was considered. Finally,

Muthen's (1985; 1987a) latent TOBIT estimator for censored

variables was estimated to: (1) provide a better estimate of the

correlation, and (2) deal with non-normality. All estimates were

obtained on an IBM-4341 mainframe computer using the LISCOMP

(Muthen, 1987) program. At this point in the research, only one

sample size (N=100) and one single fa...tor congeneric model (x =

.9, with e
e
= 1 - X2 , and Var(it) = 1.00) was considered for the

comparison analysis (see table 2, and figure 2). Future studies

will explore variations in sample size, loading size and various

model (multi-factor).

Insert Table 3 about here

Estimation Procedures

Estimations will be represented by the general family of fit

functions for analysis of covariance structures, as proposed by

Browne (1984). The most familiar estimation procedure currently

used is the NTGLS procedure. It's fitting function is:

FGLS = s - a )' W
-1

( s - a. ),

15
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where (s) and (a) refer to (y) based on a Pearsonian

correlation/covariance, with a weight matrix W = E 0 E or S 0 S,

where E = A § A' + andand a = Vec(E] (J8reskog & Goldberger,

1972).

The second estimator is Browne's (1982) asymptotically

distribution free (ADF) generalized least-squares estimator. The

fitting function for this estimator is:

where:

FADF
= ( s - a)' W

-1
( s - a),

W = S
iikl

- S
ii

S
kl'

with sij and s
kl

biased sample covariances, and S
ijkl

is the

fourth order multivariate cumulant (Kendall & Stuart, 1977).

The third estimator to be used is Muthen's (1985; 1987a)

latent TOBIT estimator. It has the same fitting function as the

NTGLS with the exception that instead of (y) referring to a
*

sample based Pearsonian correlation/covariance, (y ) refers to a

latent TOBIT correlation/covariance, based on the underlying

assumption of individual univariate normality. The TOBIT fitting

function is:

FTOBIT = ( s
*

- a
*

) W
-1

( s
*
- a

*
),

16
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where s and a refer to y TOBIT based

correlation/covariances, with a weight matrix of E
*

® E
*
or S

*
0

* * *
S , where E = A A' + andand a = VectEl (Muthen, 1985;

Muthen & Kaplan, 1985). Muthenis (1985) TOBIT approach is a two-
*

stage estimation of s , where the initial stage is the univariate

estimation of g and a 2 based on a normal distribution for

censored variables (Gupta, 1952). The second stage estimates the

covariances by maximum likelihood method from the bivariate

information by holding g and a 2 constant at the univariate

estimated levels (Muthen, 1985). This approach may be visually

conceptualized in figure 3, where a latent correlation is

estimated for two censored variables.

Insert Figure 3 about here

Results

The results of Monte Carlo study number 1 support previous

findings (Anderson & Gerbing, 1984; Boomsma, 1985) that

nonconvergence rate is inversely related to sample size at 0%

censoring. Figure 4a and 4b show the frequency of nonconvergence

1 7
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for the NTGLS estimates for the single factor model over two

levels model reliability (loading sizes), four levels of sample

size and four levels of variable censoring.

Insert Figures 4a and 4b about here

The asymmetry provided in the higher censoring conditions seems

to enhance nonconvergence, but more in the larger loading models

than the smaller, with the exception of thf "=25 condition.

Figures 5a and 5b-indicate that variable censoring has a dramatic

effect on the proportion of congeneric model rejections, though

one must be cautioned about the interpretation of the proportion

of model rejections for small samples size (e.g., N=25 and N=50).

Insert Figures 5a and 5b about here

For convenience, the amount of bias will be studied in only

two of the four X estimates (Al a noncensored continuous

variable, and X4 a censored continuous variable). Figures 6a and

-151b present the percent of bias in these two estimates over the

studied conditions. In the censored variable (x4), the percent of

18
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bias seems to be a monotonic function of the amount of variable

censor, regardless of the sample size, with slightly stronger

bias occurring in the highly reliable model (large loading size).

If one disregards the L
2 test on the basis of smaller sample

sizes and calculates individual rater reliability, since

individual reliability may be reduced to
Ali in this example, we

may interpret Figure 6a as the amount of bias in the estimate of

reliability for rater four.

The amount of bias in the noncensored continuous variable

(Al) may be considered trivial with a slight increase in model

censoring. The bias in the higher reliability model (Ai = .9)

tended to be negative, whereas the lower reliability model (Ai =

.6) tended to fluctuate more (Figure 6b).

Insert Figures 6a and 6b about here

A much more dramatic occurrence of negative bias may be seen

in figure 7a, the percent of bias in the estimate of the error

variance (es) ) in the censored variable. Here one may see a strong

negative bias even in the low censoring conditions. Sample size,

in this example, seems to have little effect on bias once

censoring has occurred. Model.loading size produced a slight

difference in bias, with the less reliable model providing

stronger bias. Figure 7b show the percent of bias in the estimate

of error variance in the non-censored variable. As seen in figure

19
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7a, the less reliable model (smaller loadings) seems more

susceptible to bias in the estimate of error variance.

Insert Figures 7a and 7b about here

Using the results from study number one, a second Monte

Carlo study was designed using a single sample size (N=100) on

the single congeneric model (see Figure 2). Figure 8 provides the

proportion of model rejections for the three estimation

procedures (NTGLS, ADF and TOBIT) across the four levels of

variable censoring.

Insert Figure 8 about here

The ADF procedure was initially incorporated to deal with

Cie non-normality of the censored models, and the TOBIT procedure

was incorporated to deal with both non-normality and the

attenuation in the correlation estimates. All three procedures

similarly reject few congeneric models at zero censoring, but as

one increases censoring the proportion of reJecticn increases in

both NTGLS and ADF. NTGLS procedures in this example are not at

all robust at the 50% censoring level, with the ADF procedure

20
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`also providing poor results. This may also be seen in figures 9a

and 9b.

Insert Figures 9a and 9b about here

Figure 9a shows the percent of bias occurring in the A
4

loading estimate (one of the censored conditions). Again the

percent of bias is monotonically related to the amount of

censoring in both NTGLS and ADF estimation procedures. The TOBIT

estimates on the other hand, produced very little bias. The

perce0-. of bias occurring for AI (noncensored condition) was

negligible for the TOBIT and NTGLS estimates, but resulted in

larger negative bias with the use of the ADF procedure (Figure

9b).

The percent of bias in the estimate of the error variance

also resulted in a strong positive monotonic relationship with

the level of censoring for both NTGLS and ADF procedures. TOBIT

estimates were consistently positively biased, but at a

relatively low level (ftgure 10a). Figure 10b shows the percent

of bias in the estimate of the error variance for the non-

censored condition. The most striking result in this figure is

the consistent positive bias produced by the TOBIT estimates.

Insert Figures 10a and 10b about here

21
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21

Monte Carlo study ni,mbez* one demonstrated very well the lack

of robustness in the NTGLS estimation procedure for retrieving

correct A parameter estimates, estimated error variances ee's,

and model fit indices (likelihood ratios (L
2
)) at 25% or more

censoring. One must also be impressed with the general lack of

model convergence with a small sample size (N=25) for such a well

defined model. This point in itself may prove to be the limiting

factor against the use of congeneric modeling techniques in

interrater reliability studies. While not reported in this paper,

concern for improper solutions (e.g., negative ee estimates) have

also been shown to be related to small sample size, which would

cause difficulty in estimating reliability.

One may conclude from the first Monte Carlo study, that the

use of J8reskog's (1970) congeneric modeling approach to

interrater reliability estimation using NTGLS methods must be

conducted very cautiously. While superior in many ways to the

ANOVA approaches, the congeneric model is very susceptible to

even mild deviations from normality (e.g., censored variables)

and requires a moderately large sampling (at least N=100) for

appropriate estimation. If one is not willing to accept these

limitations, then one will certainly have to ace c limitations

in the reliability estimates.

.22
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Monte Carlo study number two demonstrated that dealing with

non-normality alone (e.g., ADF procedure) is not enough for

providing accurate reliability estimates in censored variable

models. One must also be concerned with the attenuation in the

correlations. This study demonstrated the superiority of the

TOBIT estimates in dealing with these two conditions. If one can

assume an underlying normality position, then latent correlation

based estimates of reliability may prove to be the savior of the

congeneric modeling approach to interrater reliability, though

sample size i °s still a limiting factor. While the latent

correlation based estimates seem attractive, further Monte Carlo

studies need to be conducted before they can be fully accepted.

23
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Table 1

Monte Carlo Study Design Number 1

Estimation
procedure

Number of
variables

Loading
sizes

Sample
sizes

Percent'
of censor

Number of
replications

NTGLS 4 X = .9 25 0% 100
NTGLS 4 x = .9 50 0% 100
NTGLS 4 x = .9 100 0% 100
NTGLS 4 X = .9 400 0% 100
NTGLS 4 X = .6 25 0% 100
NTGLS 4 X = .6 50 0% 100
NTGLS 4 X = .6 100 0% 100
NTGLS 4 X = .6 400 u% 100
NTGLS 4 X = .9 25 25% 100
NTGLS 4 x = .9 50 25% 100
NTGLS 4 X = .9 100 25% 100
NTGLS 4 X = .9 400 25% 100
NTGLS 4 x = .6 25 25% 100
NTGLS 4 X = .6 50 25% 100
NTGLS 4 X = .6 100 25% 100
NTGLS 4 x = .6 400 25% 100
NTGLS 4 X = .9 25 50% 100
NTGLS 4 X = .9 50 50% 100
NTGLS 4 x = .9 100 50% 100
NTGLS 4 X = .9 400 50% 100
NTGLS 4 X = .6 25 50% 100
NTGLS 4 x = .6 50 50% 100
NTGLS 4 X = .6 100 50% 100
NTGLS 4 x = .6 400 50% 100
NTGLS 4 x = .9 25 75% 100
NTGLS 4 x = .9 50 75% 100
NTGLS 4 X = .9 100 75% 100
NTGLS 4 x = .9 400 75% 100
NTGLS 4 x = .6 25 75% 100
NTGLS 4 x = .6 50 75% 100
NTGLS 4 x = .6 100 75% 100
NTGLS 4 x = .6 400 75% 100

1 Two of the four X's remained continuous (0% censor) throughout
the study for internal comparison.
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Table 2

Monte Carlo Study Design Number 2

Estimation
procedure

Number of
variables

Loading
sizes

Sample
sizes

percent'
of censor

Number of
replications

NTGLS 4 A = .9 100 0% 100
ADF 4 X = .9 100 0% 100
TOBIT 4 A = .9 100 0% 100

NTGLS 4 A = .9 100 25% 100
ADF 4 A = .9 100 25% 100
TOBIT 4 A = .9 100 25% 100

NTGLS 4 A = .9 100 50% 100
ADF 4 A = .9 100 50% 100
TOBIT 4 A = .9 100 50% 100

NTGLS 4 A = .9 100 75% 100
ADF 4 A = .9 100 75% 100
TOBIT 4 A = .9 100 75% 100

1
Two of the four A's remained continuous (0% censor) throughout
the study for internal comparison.

7.77-17-787:77
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Table 3

Model Population Values and Corresponding Standard Errors

Parameter Value

Standard Errors

N=25 N=50 N=100 N=400

Large Loading

Al A2 A3 A4 .900 .160 .112 .079 .039

e
Cl

0
E2

e
C3

e
E4

.190 .074 .052 .037 .018

Moderate Loading

Al x2 x3 x4
.600 .232 .163 .114 .057

e
C
1

e
C2

e
E
3

e
E4

.640 .250 .175 .123 .061
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Figure 2

Single Factor Congeneric Model
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FIGURE 7a
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